Performing Valid Inference on Predicted Data

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Adam Visokay

6th IMPRS-PHDS Annual Academy

December 4-6, 2024

University of Virginia Bachelors in History & Economics Syracuse University Masters in Economics

University of Washington PhD in Sociology (current)

Research Interests

Computational Social Science Methods Text as data Machine Learning / Al Rashomon Effect Inference on Predicted Data (IPD)

Science of Science Population Health Mortality Estimation with Verbal Autopsy (VA) Morbidity - Obesity

Critical Demography

First, a thought experiment:

No person alive today has seen a dinosaur. So how do we draw them?

First, a thought experiment:

No person alive today has seen a dinosaur. So how do we draw them?

Mégalosaure restauré.

From "Les animaux d'autrefois" by Victor Meunier, 1869

From The Illustrated Dinosaur Encyclopedia by Dougal Dixon, 1988

Leaping Laelaps - Charles R. Knight, 1897

Answering Modern Scientific Questions

Figure 1: Artist renderings of a rhinoceroses based on limited information. Left: Albrecht Dürer's *The Rhinoceros*, woodcutting (1515); Right: C.M. Kosemen's re-imagining of a rhinoceros based on its skeleton.

Predicted Data

\$\$\$\$ (DataYouWant)

Predicted Data

\$ \$\$\$\$ f(DataYouCanGet) = (DataYouWant)

\$ \$\$\$\$ f(DataYouCanGet) = (DataYouWant)

\$ \$\$\$\$ f(DataYouCanGet) = (DataYouWant)

Valid Inference

W

Valid Inference

W

Obesity $\leftrightarrow \beta Age$

Which is a better measure of obesity, BMI or DXA scanned total body fat percentage?

Obesity $\leftrightarrow \beta Age$

While BMI is cost-effective and easy to calculate, it doesn't provide the detailed body composition analysis that a DXA scan offers. If you're looking for a more comprehensive assessment of your body fat and overall health, a DXA scan might be worth the investment.

Which is a better measure of obesity, BMI or DXA scanned total body fat percentage?

Obesity $\leftrightarrow \beta Age$

While BMI is cost-effective and easy to calculate, it doesn't provide the detailed body composition analysis that a DXA scan offers. If you're looking for a more comprehensive assessment of your body fat and overall health, a DXA scan might be worth the investment.

 $\begin{array}{l} \mathbf{DXA} \leftrightarrow & \beta_1 \mathbf{Age} \\ \mathbf{BMA} \leftrightarrow & \beta_2 \mathbf{Age} \end{array}$

 $\beta_1 \neq \beta_2$

Outcome of Interest	Cheap Prediction	Ground Truth
Cause of Death		
Obesity		
Income		
Environmental Attitude		

Outcome of Interest	Cheap Prediction	Ground Truth	Covariate
Cause of Death			Age
Obesity			Age
Income			Age
Environmental Attitude			Age

Outcome of Interest	Cheap Prediction	Ground Truth	Covariate
Cause of Death		Traditional Autopsy	Age
Obesity		DXA Scan Fat Percentage	Age
Income		Administrative Tax Records	Age
Environmental Attitude		Interview	Age

Outcome of Interest	Cheap Prediction	Ground Truth	Covariate
Cause of Death	Verbal Autopsy Narrative	Traditional Autopsy	Age
Obesity	Body Mass Index (BMI)	DXA Scan Fat Percentage	Age
Income	Self Reported Survey	Administrative Tax Records	Age
Environmental Attitude	NLP Classification	Interview	Age

Outcome of Interest	Cheap Prediction	Ground Truth	Covariate
Cause of Death	Verbal Autopsy Narrative	Traditional Autopsy	Age
Obesity	Body Mass Index (BMI)	DXA Scan Fat Percentage	Age
Income	Self Reported Survey	Administrative Tax Records	Age
Environmental Attitude	NLP Classification	Interview	Age

Thank you!

avisokay@uw.edu https://avisokay.github.io/

