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Abstract

In settings where most deaths occur outside the healthcare system, verbal
autopsies (VAs) are a common tool to monitor trends in causes of death
(COD). VAs are interviews with a surviving caregiver or relative that are
used to predict the decedent’s COD. Turning VAs into actionable insights for
researchers and policymakers requires two steps (i) predicting likely COD
using the VA interview and (ii) performing inference with predicted CODs
(e.g. modeling the breakdown of causes by demographic factors using a
sample of deaths). In this paper, we develop a method for valid inference
using outcomes (in our case COD) predicted from free-form text using
state-of-the-art NLP techniques. This method, which we call multiPPI++,
extends recent work in “prediction-powered inference” to multinomial
classification. We leverage a suite of NLP techniques for COD prediction
and, through empirical analysis of VA data, demonstrate the effectiveness
of our approach in handling transportability issues. multiPPI++ recovers
ground truth estimates, regardless of which NLP model produced predic-
tions and regardless of whether they were produced by a more accurate
predictor like GPT-4-32k or a less accurate predictor like KNN. Our find-
ings demonstrate the practical importance of inference correction for public
health decision-making and suggests that if inference tasks are the end goal,
having a small amount of contextually relevant, high quality labeled data
is essential regardless of the NLP algorithm.

1 Introduction

Verbal Autopsies (VAs) are a pivotal tool in public health research, particularly in contexts
where access to formal medical records is limited (Soleman et al., 2006; Thomas et al., 2018).
VA serves as a method to ascertain causes of death (COD) by collecting information from
relatives or witnesses in circumstances necessitated by resource constraints, remote locations,
or inadequate healthcare infrastructure (Baqui et al., 2006; Byass et al., 2012; Wahab et al.,
2017; Blanco et al., 2021).VA interviews include a structured yes/no questionnaire and an
open text narrative where the interviewees provide additional information about the illness
or death in their own words.

After the interview, a COD is assigned either by clinician review or, more commonly, by
using statistical algorithms. Finally, since financial and logistical constraints prevent VAs
from being performed on all deaths, researchers and policymakers use statistical tools to
summarize patterns in COD (e.g. the breakdown of infectious disease deaths by age, race,
sex, etc).

We propose a method for valid inference using the open text VA narratives, summarized
in Figure 1. To do this, we address two pressing challenges. First, we use text narratives
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exclusively to classify COD. Structured VA interviews are long (typically around an hour)
and emotionally taxing for respondents (Surek-Clark, 2020). Narratives provide an opportu-
nity for respondents to describe the circumstances around the death of someone they knew
well in their own words, without needing to translate clinical jargon or answer irrelevant
questions. Using narratives alone could also dramatically reduce the length of the interview,
both minimizing impact on the respondent and allowing enumerators to collect more VAs.
Recent work (Danso et al., 2013; Blanco et al., 2021; Manaka et al., 2022; Cejudo et al., 2023)
has begun exploring the potential of natural language processing (NLP) for COD classifica-
tion in VA. Our work furthers this discussion by leveraging state-of-the-art NLP tools. Also,
unlike prior NLP work which focuses on predictive performance (Naradowsky et al., 2012; Liu
et al., 2019; Ye et al., 2021; Peskoff & Stewart, 2023), our goal is to utilize these predictions in
statistical inference to understand patterns in COD.

Second, we propose a method for inference that corrects for misclassification in CODs pre-
dicted by NLP. Training and evaluating COD prediction algorithms is extremely challenging
(Murray et al., 2011; Fottrell & Byass, 2010; Murray et al., 2014; Clark et al., 2018; Li et al.,
2020), in part because building training sets with reliably labeled CODs is taxing. Clinicians
could review VAs and assign causes, but this diverts critical resources from patient care
and, since most deaths occur outside healthcare facilities, a physical autopsy is impossible.
Hence, it is appealing to create a larger training set by combining the limited number of
labeled VAs in one domain with other labeled VAs from different domains (e.g. locations).
However, the diversity of cultural practices, linguistic nuances, and variations in interview
techniques (not to mention potential biological factors) means that an algorithm trained on
labeled VAs in one context may perform poorly in another. Our inferential methods must
account for additional uncertainty that arises when most COD labels are predicted, not
known. We also need to adjust for transportability so that VAs labeled in other contexts can
be incorporated effectively into the training set. To do this, we extend prediction-powered
inference (PPI++; Angelopoulos et al., 2023a;b) to settings of multinomial classification,
showcasing its adaptability to a broader range of prediction problems. We propose an
estimator, called multiPPI++, used to draw valid statistical inference using predictions from
any arbitrary black-box machine learning model given access to a small subset of ground
truth labels for multinomial data.

The Workflow for Valid Inference Using multiPPI++ for VA Narratives.

Figure 1: Overview of multiPPI++ correction. Ground truth labels and predicted labels are
used separately to perform the same inference task in Domain A. We use the difference
between these estimates as a correction factor in Domain B where ground truth labels are
not available.
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2 Population Health Metrics Research Consortium Narratives

The Population Health Metrics Research Consortium (PHMRC) dataset was collected in
2005 to provide a high quality, standardized dataset that includes ground truth COD labels
from traditional autopsies, structured questionnaire responses, and free-text open narrative
responses (Murray et al., 2011). It is one of a very small number of VA datasets with clinically
validated causes. These data were curated from six sites across four countries: (Andhra
Pradesh and Uttar Pradesh, India; Bohol, Philippines; Dar es Salaam and Pemba Island, Tanzania;
and Mexico City, Mexico). An example PHMRC narrative follows: “the deceased had been
burnt and had lost mental balance and died within 1.5 hours of the accident” (Ground Truth from
Traditional Autopsy: Fires).

We focus our analysis on adult deaths, excluding those under 12 years of age, in the de-
identified narratives released in Flaxman et al. (2018). CODs are categorized into five
broader groups: non-communicable diseases, communicable diseases, external causes,
maternal causes, and AIDS or tuberculosis (AIDs-TB), based on International Classification
of Diseases Tenth Revision (ICD-10) codes (McCormick et al., 2016). See Appendix A.1 for
the full mapping from ICD-10 codes to COD labels.

Under these five broad classes, there still remains considerable heterogeneity in the COD
distribution between sites. Figure 2 illustrates this phenomenon. While “non-communicable”
diseases (e.g., various cancers, COPD, stroke) are the most common COD across all six sites,
the second most common cause is site-specific. Namely, two sites identify communicable
diseases (e.g., malaria, pneumonia) as the second most common COD, while external causes
(e.g., suicide, homicide, traffic accidents) are reported in three sites and AIDs-TB in one site.
In addition, the difference in rates between the first and second most common CODs varies
considerably, with, for example, a 5:4 ratio in Pemba versus a 6:1 ratio in Mexico.

These observations suggest that while information from one site may provide some insights
into another, caution is warranted when extrapolating NLP model performance from one
location to all others. In practice, this lack of transportability between sites poses a significant
public health challenge and is well-documented in the VA literature on predicting COD
(e.g., see McCormick et al., 2016). However, without a means of addressing this issue
for downstream statistical inference, it may be necessary to establish COD data collection
systems at each new site of interest, an endeavor that would likely prove prohibitively
expensive. We address this explicitly in Section 3.2.

Frequency Distribution of COD by Site

Figure 2: While non-communicable disease is the most common COD in each site, relative
prevalence of each COD varies considerably.
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3 Proposed Analytic Workflow

3.1 NLP for VA Narratives

The first aim of this work is to assess the predictive performance of contemporary NLP
methods for classifying COD from free-text narratives, rather than structured interviews. To
predict COD from the free-text narratives, we analyze a range of NLP techniques, including
various methods based on a bag-of-words (BoW) representation and more sophisticated
pre-trained models such as Bidirectional Encoder Representations from Transformers (BERT;
Devlin et al., 2018) and large language models (LLMs) such as the recently popular Genera-
tive Pre-trained Transformer (GPT model; Lai et al., 2023).

To generate BoW representations of VA narratives, we employed scikit-learn’s
CountVectorizer, LabelEncoder, and TfidfVectorizer (Kramer & Kramer, 2016; Pedregosa
et al., 2011), as well as nltk’s word tokenize (Millstein, 2020) for data pre-processing. After
processing, the initial token count of 556, 713 was reduced to 218, 804. We then applied three
supervised classifiers to predict COD using the BoW representations and ground truth cause
of death labels: Support Vector Machine (SVM), K Nearest Neighbors (KNN), and Naive
Bayes (NB). SVM was implemented with a third-degree linear kernel and C = 1.0, while
KNN used cosine distance and 9 nearest neighbors, chosen by incrementing from K = 3
until accuracy saturation. The BERTBASE encoder was configured with five transformer
layers, to include two input layers of size 256, a main layer of size 768, an intermediate layer
of size 512, and a fine-tuning output layer of size 5. As the VA narratives in our data were
de-identified, we were able to further assess the predictive performance of OpenAI’s GPT
models (GPT-3.5, GPT-3.5-turbo, GPT-4, and GPT-4-32K Biswas, 2023). After exploratory
study, we selected GPT-4-32K for its larger context window. We used a zero-shot prompt
(see Figure 3) with a temperature set to zero for all tasks. For all of the methods, we split the
data into an 80% training set and 20% testing set, where we held out the true COD labels
in the testing set to assess each method’s predictive accuracy and F1-score. For BERTBASE,
training was conducted over two epochs.

We faced a series of challenges in engineering the LM prompt, namely, coercing the LM to
consistently return outputs constrained to our exact list of output classes [communicable,
non-communicable, external, maternal, aids-tb]. Earlier iterations of the prompt yielded
responses such as “the patient died due to external causes.” While perhaps semantically
correct, validating outputs such as this at scale is intractable and would require additional
steps (regex, fuzzy string matching, etc.). Instead, we found that including our desired
output classes between <option> html tags and explicitly asking the LM to return only
a choice from the list of options in the prompt improved results considerably. Future
work may include few shot prompting with select domain-specific examples or retrieval
augmented generation from a larger database of narratives.

3.2 Valid Statistical Inference with multiPPI++ Correction

The second aim of this work addresses the challenge of conducting valid downstream
inference on covariates associated with predicted COD labels. As long as the NLP model is
not always 100% accurate, uncritical inference using NLP predictions will always contain
bias, which we must correct for before trusting the results. Note that while the PHMRC
dataset is complete with ground truth COD labels from traditional, physical autopsies,
this is often not practical due to resource constraints. Particularly in vulnerable areas
without healthcare infrastructure, COD is abstracted solely from VA without access to
means of verification. Recent works have shown that reifying algorithmically-derived
outcomes (here, COD) for downstream inference can lead to biased coefficient estimates
and anti-conservative inference (Wang et al., 2020; Angelopoulos et al., 2023a;b; Miao et al.,
2023; Egami et al., 2023; Ogburn et al., 2021; Hoffman et al., 2024).

To address this, we employ a recent technique known as prediction-powered inference (PPI;
Angelopoulos et al., 2023a) and its extension, PPI++ (Angelopoulos et al., 2023b) and derive
its appropriate form in the context of multiclass logistic regression. These methods operate
by using a small subset of ground truth COD labels to rectify the coefficient estimates and
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GPT-4 Zero-Shot Prompt Used for COD Prediction

Figure 3: The zero-shot prompt explicitly tags the VA narrative, provides minimal context
for each COD label, lists an explicit set of COD options to coerce a constrained output, and
provides direct instructions pointing to the <narrative><label><option> tags.

standard errors from a regression based on predicted COD labels. To that end, assume that
our data are comprised of n labeled (l) observations, L = {(Yl,i, Ŷ f

l,i, Xl,i, Zl,i); i = 1, . . . , n},

and N unlabeled (u) observations, U = {(Ŷ f
u,i, Xu,i, Zu,i); i = n + 1, . . . , n + N}, where Y

denotes the true cause of death, Ŷ f denotes the cause of death predicted from an NLP
function, f (Z), X denotes the covariates of interest, and Z denotes the VA text narratives.
In statistical inference, one can frame estimating statistical parameters, θ, as minimizing an
objective function of the form:

θ Ground Truth = arg min
θ∈Rd

E[lθ(X, Y)], (1)

where lθ : X × Y → R is a convex loss function in θ ∈ Rd. In our case, the loss function
lθ(X, Y) is defined as the negative log conditional likelihood of the multinomial logistic
regression. In practice, replacing the observed COD, Y, with Ŷ f yields what we refer to as a
Naive estimate:

θNaive = arg min
θ∈Rd

E[lθ(X, Ŷ f )]. (2)

The Naive estimate relies heavily on the assumption that the NLP model’s predictions
closely resemble the true CODs.

PPI++, and our extension, multiPPI++, seeks to utilize all available information from the
unlabeled and labeled data, by minimizing the following objective function:
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θPPI++
λ = arg min

θ∈Rd

{
E[lθ(Xl , Yl)] + λ

(
E[lθ(Xu, Ŷ f

u )]−E[lθ(Xl , Ŷ f
l )]
)}

, (3)

where λ ∈ [0, 1] is a tuning parameter which controls how much weight is placed on using
the real labels versus the predicted labels. Note that this estimator combines the ground
truth estimator from the labeled subset, which is statistically valid but may lack sufficient
sample size, with the Naive estimator, which provides additional information and data
from the unlabeled subset.

We extend the application of the PPI++ approach from its logistic regression example to the
multinomial case. Angelopoulos et al. (2023b) mention this is possible, but do not provide
details of the derivation, and their model has overparameterization issues. We instead
derive a different parameterization that avoids identifiability issues, and we complete the
derivation of PPI++ correction for multiclass logistic regression. We refer to this variant
as “multiPPI++”, where, for the multinomial classification problem with K classes and
outcomes Yi ∈ {0, . . . , K − 1}, our loss function takes the form

lθ(X, Y) = − 1
n

n

∑
i=1

XT
i θYi + log

(
K−1

∑
k=1

eXT
i θk

)
.

We present the multiPPI++ adjustment procedures in Algorithm 1. See Appendix A.2
and A.3 for complete derivations.

4 Inference with COD Predicted from VA Narratives

4.1 Experimental Setup

To study the performance of the proposed methods, we designed an experiment in which
we synthetically removed ground truth COD labels from the PHMRC dataset and replaced
them with predicted COD from the NLP methods detailed above. Specifically, for each of
the the six sites in the PHMRC dataset, we trained the NLP methods on the other five sites
and used the resulting models to predict COD in the sixth site (see Figure 4).

We compared the predicted outcomes to the withheld, true outcomes for the sixth site in
terms of predicted accuracy and F1-score. We then carried forward these predictions to
a downstream inferential model in which we regressed site-specific COD on the age of
the decedent, to illustrate the performance of the multiPPI++ estimator. For each site, we
retained 20% of the labeled outcomes and replaced the remaining 80% with the NLP pre-
dictions, to mirror the labeled and unlabeled subsets of the data necessary for the multiPPI++
approach. We compared the results of the proposed estimator to two additional estimators:
(i) the ‘ground truth’ estimator, which utilized the full set of true COD labels, and (ii) the
‘Naive’ estimator, which used only the predicted COD, treating them as if they were ob-
served. Note that, in many practical settings, the ground truth estimator is not feasible, but
it is included here as a point of reference. Further,

due to the variability in data between sites and the fact that the NLP model was not trained
on this particular site, we anticipate that the regression coefficients estimated using the
NLP-predicted COD will differ from those estimated using the true COD.

We exemplify one representative set of experiments in which the Uttar Pradesh site is
excluded from the NLP model training and used as the validation site to assess the NLP
models’ predictive performance and the downstream inferential results.

4.2 NLP Prediction Results

First, using the “leave one site out” procedure described in Figure 4, we trained each
NLP model to predict COD from narratives on five sites, with the sixth site reserved as
a validation set to use for assessing the methods. As evidenced by the COD distribution
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“Leave One Out” Synthetic VA Transportability Experiment

Figure 4: The classic and BERT models are trained with VA narratives from five other sites
and used to predict COD from Uttar Pradesh narratives. The zero shot GPT-4 model predicts
COD without any site specific narrative fine-tuning. Ground truth, Naive and multiPPI++
corrected inference is performed using these Uttar Pradesh predictions.

displayed in Figure 2, we are dealing with considerable class imbalance within and between
sites. We address this in a sensitivity analysis (see Figures 29-54 in A.6) where we train each
model on a stratified sample with an 80/20 split for each class to ensure an equal proportion
of training examples for each class. The results from this analysis are not substantively
different from our main results where we do not account for the class imbalance in our
modeling. Alternative resampling methods such as SMOTE, ADASYN or Tomek Links
(Chawla et al., 2002; He et al., 2008; Tomek, 1976) could be applied to correct for the
imbalanced distribution of COD. However, even in the absence of such considerations,
we show that multiPPI++ still obtains valid estimates in downstream inference using
predictions from imperfect NLP modeling. This extensibility of our approach is one of the
advantages of the multiPPI++.

We focus our subsequent analysis one representative site, Uttar Pradesh, but share results
from the other sites in the Appendix. These results for Uttar Pradesh are summarized in
Table 1 and Figure 5, which contain the four models with highest accuracy. All models
scored between 0.60-0.75 accurate, with GPT-4 yielding the highest accuracy (0.75). F1-scores
were more uniform, with all but KNN getting F1-scores between 0.71-0.74. KNN scored
0.66. These results seem to point at GPT-4 either being slightly better or nearly equivalent to
the other NLP methods we tested. GPT-4’s predictions matched the performance of the best
examples from the VA literature, despite using only using only the VA text narratives and
not the structured questionnaire (James et al., 2011; Murray et al., 2014; Serina et al., 2015).

Metrics BoW w/ SVM BoW w/ KNN BoW w/ NB BERT GPT-4

Accuracy 0.68 0.63 0.60 0.55 0.75

F1-Score 0.74 0.66 0.72 0.71 0.73

Table 1: GPT-4 is far more accurate than competing NLP models and is among the best
in terms of F1-score. Using only text narratives, GPT-4 performs on par with the best
predictions in the VA literature, which are produced with much richer data in the form of
structured questionnaires.

A unique feature of LLMs compared to other prediction algorithms is that they have the
capacity, and in fact the tendency, to output class labels that do not exist in the ground
labels. In our analysis, GPT-4 predicted 1503 out of 6763 COD labels as ”unclassified”. Upon
manual review, these 1503 narratives contained no useful information for COD inference.
The modal “unclassified” narrative was “the interviewee thanked the interviewer” (n=178).
While the accuracies appear similar, GPT-4 correctly identified a flaw in the data cleaning in
the PHMRC dataset, which suggest that the accuracies among the other methods may be
overinflated. For each of the combination of six sites and five NLP model, we generated
predictions and used this to generate regression coefficients.
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For the sake of brevity, we present the four models with the best performance for the
Uttar Pradesh site, NB, KNN, SVM, and GPT-4. Figure 6 displays point estimates and 95%
confidence intervals for the ground truth, Naive and multiPPI++ corrected inference.

Uttar Pradesh NLP Prediction Confusion Matrices

(a) BoW with Naı̈ve Bayes (b) BoW with K Nearest Neighbors

(c) BoW with Support Vector Machine (d) GPT-4

Figure 5: For VA narratives from Uttar Pradesh, most of the COD misclassifications are
assigned non-communicable COD label. Naive Bayes mostly predicts non-communicable
and achieves 0.60 accuracy in-part because non-communicable is overwhelmingly the most
common ground truth COD.

4.3 Inferential Model Results

In the case of NB and SVM, which had some of the lower F1-scores, there is a large discrep-
ancy between the ground truth and the predicted values, demonstrating that replacing 80%
of the causes of death with predicted causes of death yields significantly different regression
coefficients for the age of the decedent. multiPPI++ correction rectifies estimates back to
baseline, demonstrating its ability to account for (i) model inaccuracy and (ii) transporta-
bility bias. Interestingly, we observe that the Naive regression coefficients from KNN and
GPT-4 are not as distant from the ground truth as the other two methods, even though KNN
had the worst F1-score. Figure 7 shows the association between F1-score and multiPPI++ λ,
which also fail to show any significant association. This implies that F1-score alone may not
be a good predictor of the quality of downstream statistical inference.
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As for the widths of the confidence intervals, we observe that ground truth naturally had
the thinnest, as it had the largest sample size and used real data points. On the other hand,
the Naive estimate and multiPPI++ correction show similar confidence interval widths.
Since the widths of the confidence interval for multiPPI++ is the sum of the widths of the
Naive interval plus the width of the correction term, this seems to indicate that performing
the multiPPI++ correction does not seem to add a significant amount of uncertainty. This
demonstrates that it can correct for transportability bias without much additional informa-
tion cost. This is further evidenced by the seeming lack of association between the tuning
parameter λ, which weights the use of the predicted outcomes in the downstream inferential
model and the accuracy of the predictions. As λ is a function of both the outcome and the
associated features, we conclude that better predicted outcomes carry no additional useful
information for parameter estimation.

Figure 6 demonstrates that multiPPI++ improves the accuracy of statistical estimates using
a post-facto correction term estimated using relatively small amounts of labeled data. As
this is applied after model predictions are made, multiPPI++ does not improve or degrade
prediction accuracy. This procedure provides a correction for the biased statistical inference
parameters and the deflated uncertainty intervals around them, given NLP produced
estimates of likely COD from VA narrative predictions. This is a nuanced yet important
distinction as these downstream statistical inference parameters are what describe the
relationship between covariates, such as age, and cause of death distributions. This same
intuition extends to other domains where the end goal is to use inference to guide decision
making where NLP predictions are used in place of ground truth labels.

Inferential Experiment Results

(a) BoW with Naı̈ve Bayes (b) BoW with K-Nearest-Neighbors

(c) BoW with Support Vector Machine (d) GPT-4-32k

Figure 6: Ground truth, Naive estimation, and multiPPI++ correction of estimation of log
odds ratios for multinomial regression for age in Uttar Pradesh. multiPPI++ correction both
recovers point estimates and reflects the increased uncertainty corresponding to the use of
predicted COD rather than known COD with wider confidence intervals.
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No Apparent Association Between F1-scores and multiPP++ λ’s

Figure 7: There appears no strong global relationship between multiPPI++ λ and F1-score,
though associations do emerge when subsetting by site, hinting at a Yule-Simpson effect.

5 Discussion

This paper uses a variety of NLP models to predict COD using VAs and, subsequently,
develops a statistical method for valid inference using these predicted CODs. This research
not only contributes to the advancement of predictive modeling in public health, but also
underscores the significance of parameter interpretation in guiding decisions within diverse
and dynamic health scenarios.

Based on our research, there are several points that we believe are worthy of further
investigation. First, we noticed that better predictive accuracy in the COD classifications
did not necessarily translate to improved parameter estimation when used as a generative
model for downstream statistical inference, at least not under the accuracy ranges examined
in this paper. In situations where the user is ultimately interested in accurate parameter
estimation, as is often the case in public health, care must be taken to differentiate between
the most accurate model for prediction versus the most accurate model for parameter
estimation, as it is possible that very cheap models such as KNN can be as useful as more
expensive, newer models like GPT-4. For example, the cost to train and predict COD with
BoW representations and KNN, NB and SVM was trivial, whereas performing the same
task with GPT-4 cost $3000USD.

Second, the extreme class imbalance in COD drives many of our prediction results. While it
is not possible in practice to directly balance across CODs, there are broader design questions
that could substantially improve inference. How, for example, should a researcher spend
their very limited budget to label relevant VAs? And are there other ways of categorizing
deaths that provide richer information than the five categories we use? Third, there is
evidence that NLP techniques such as large language models perform worse in non-English
languages Navigli et al. (2023); Lai et al. (2023); Hirschberg & Manning (2015), which is a
major consideration since VAs are common in non-English settings. This could introduce
bias to potential VA inference in other languages (Surek-Clark, 2020). This is a limitation
of our simulation study, since it does not account for differential translation quality across
languages. Future work might instead leverage NLP models specifically pre-trained for
multiple languages or medical text (Peskoff et al., 2021; Singhal et al., 2023).
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Dutta, Wafaie Fawzi, Sara Gómez, Bernardo Hernández, Rohina Joshi, Henry D Kalter,
Aarti Kumar, Vishwajeet Kumar, Marilla Lucero, Saurabh Mehta, Bruce Neal, Devarsetty
Praveen, Zul Premji, Dolores Ramı́rez-Villalobos, Hazel Remolador, Ian Riley, Minerva
Romero, Mwanaidi Said, Diozele Sanvictores, Sunil Sazawal, Veronica Tallo, and Alan D
Lopez. Using verbal autopsy to measure causes of death: the comparative performance
of existing methods. BMC Medicine, 12(1), January 2014. ISSN 1741-7015. doi: 10.1186/
1741-7015-12-5. URL http://dx.doi.org/10.1186/1741-7015-12-5.

Jason Naradowsky, Sebastian Riedel, and David Smith. Improving NLP through marginal-
ization of hidden syntactic structure. In Jun’ichi Tsujii, James Henderson, and Mar-
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A Appendix

A.1 ICD-10 COD Classification

Mapping 34 PHMRC All-Cause Mortality Labels to Five Broad COD Labels
ICD-10 Code All-Cause Mortality Label Broad COD Label
K74 cirrhosis non-communicable
G40 epilepsy non-communicable
J18 pneumonia communicable
J44 copd non-communicable
I21 acute myocardial infarction non-communicable
X00-X09 fires external
N17-N19 renal failure non-communicable
C34 lung cancer non-communicable
O00-O99 maternal maternal
W65-W74 drowning external
I00-I99 other cardiovascular diseases non-communicable
B20-B24 aids aids-tb
Varies other non-communicable diseases non-communicable
W00-W19 falls external
V01-V99 road traffic external
E10-E14 diabetes non-communicable
A00-B99 other infectious diseases communicable
A15-A19 tb aids-tb
X60-X84 suicide external
Varies other injuries external
C53 cervical cancer non-communicable
I60-I69 stroke non-communicable
B50-B54 malaria communicable
J45 asthma non-communicable
C18-C20 colorectal cancer non-communicable
X85-Y09 homicide external
A09 diarrhea/dysentery communicable
C50 breast cancer non-communicable
C81-C96 leukemia/lymphomas non-communicable
X40-X49 poisonings external
C61 prostate cancer non-communicable
C15 esophageal cancer non-communicable
C16 stomach cancer non-communicable
T63 bite of venomous animal external

A.2 PPI and PPI++: overview

We formalize our problem setting while reviewing the prediction-powered inference PPI
and PPI++ approach (Angelopoulos et al., 2023a;b). The goal of PPI is to estimate a d-

dimensional parameter θ with n labeled data points (Xli, Yli)
iid∼P, i ∈ {1, . . . , n}, and N

unlabeled data points Xui
iid∼PX, i ∈ {1, . . . , N}. Additionally, there is a black-box model

f that uses the features to predict the outcomes based on labeled and unlabeled data,
denoted as Ŷ f

l = (Ŷ f
l1, . . . , Ŷ f

ln) and Ŷ f
u = (Ŷ f

u1, . . . , X̂ f
uN). The prediction rule f is assumed

to be independent of the observed data. While PPI performs inference on a correction
term to incorporate these black-box predictions; PPI++ improves the methodology to be
more computationally efficient and develops a modification that adapts to the accuracy of
the prediction rule f by introducing an additional parameter λ that interpolates between
classical and prediction-powered inference.

The starting point of PPI and PPI++ approach is to define the population losses:

L(θ) = E[lθ(X, Y)], and
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L f (θ) = E[lθ(X, Ŷ f )].
It is recognized that

L fl (θ) = E[lθ(Xl , Ŷ f
l )] = E[lθ(Xu, Ŷ f

u )] = L fu(θ).

Therefore the “rectified” loss is defined as:

LPPI(θ) = Ln(θ) + L fu
N (θ)− L fl

n (θ)

where

Ln(θ) =
1
n

n

∑
i=1

lθ(Xli, Yli),

L fl
n (θ) =

1
n

n

∑
i=1

lθ(Xli, Ŷ f
li )), and

L fu
N (θ) =

1
N

N

∑
i=1

lθ(Xui, Ŷ f
ui).

The rectified loss leads to the prediction-powered point estimate:

θ̂PPI = arg min
θ∈Rd

LPPI(θ).

PPI constructs the confidence set CPPI
α = {θ ∈ Rd s.t. 0 ∈ C∇

α (θ)} for true parameter θ∗ by
forming (1− α)-confidence sets, C∇

α (θ), for the gradient of the loss ∇LPPI(θ). This approach
works well for a fixed θ but suffers from computational issue when forming the confidence
set for every θ ∈ Rd. PPI++ derives the asymptotic normality about θ̂. This result allows the
construction of (1 − α)-confidence intervals CPPI

α = {θ̂PPI
j ± z1−α/2 × σ̂j/

√
n}, where σ̂2

j is

a consistent estimate of the asymptotic variance of θ̂PPI
j and zq is the q-quantile of standard

normal distribution. Similar confidence intervals centered around θ̂PPI can be constructed
when the inference is performed on the whole θ∗ vector rather than a single coordinate θ∗j ,
which results in far more efficient algorithm.

Moreover, PPI++ generalizes PPI to allow the inference to adapt to the accuracy of the
supplied predictions, yielding estimations that are never worse than the classical inference.
This approach is called “power tuning” by incorporating a tuning parameter λ ∈ [0, 1] in
the rectified loss, leading to the following estimator:

θ̂PPI++λ = arg min
θ

LPPI++
λ (θ),

where
LPPI++

λ (θ) = Ln(θ) + λ(L fu
N (θ)− L fl

n (θ)).

PPI++ recovers the original PPI approach when λ = 1 and reduces to classical inference
when λ = 0. One can adaptively choose a data-dependent tuning parameter λ̂ to maximize
the estimation and inferential efficiency.

A.3 multiPPI++

In K-class multinomial classification problem with outcomes Yi ∈ {0, . . . , K − 1} and co-
variates Xi ∈ Rd, the parameter of interests θ is a d(K − 1)-dimensional vector whose k-th
block θk ∈ Rd of components represent parameters for class k ∈ {1, . . . , K − 1} excluding
the reference class to avoid overparameterization. The loss function in classical inference
takes the form

lθ(X, Y) = − 1
n

n

∑
i=1

XT
i θYi + log

(
K−1

∑
k=1

eXT
i θk

)
,
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Algorithm 1: multiPPI++: Prediction-powered inference for Multinomial Classification

Input: labeled K-category COD data {(Xli, Yli)}n
i=1, unlabeled data {Xui}N

i=1, NLP
model f , significance level α ∈ (0, 1), coefficient index j ∈ [d(K − 1)]

1. Optimally select tuning parameter λ̂ // set tuning parameter

2. θ̂m
λ̂
= arg min

θ∈Rd(K−1)
Lm

λ̂
(θ) // multiPPI++ estimator

3. Ĥ = 1
N+n (∑

n
i=1 ψ′′(XT

li θ̂
m
λ̂
)XliXT

li + ∑N
i=1 ψ′′(XT

ui θ̂
m
λ̂
)XuiXT

ui), where

ψ(θ, x) = log
(

∑K−1
k=1 exTθk

)
, θk ∈ Rd // empirical Hessian

4. Σ̂ = Ĥ−1( n
N V̂f + V̂∆)Ĥ−1, where

V̂f = λ̂2ĈovN+n((ψ
′(XT

li θ̂
m
λ̂
)− Ŷ f

li ))Xli) and

V̂∆ = Ĉovn((1 − λ̂)(ψ′(XT
li θ̂

m
λ̂
) + (λ̂Ŷ f

li − Yli)Xli) // covariance estimator

Output:
Prediction-powered point estimates θ̂m

λ̂
and confidence interval

Cm
α =

(
θ̂m

λ̂,j
± z1−α/2

√
Σ̂jj/n

)
for coordinate j

Defining

ψ(θ, x) = log

(
K−1

∑
k=1

exTθk

)
,

and the multiPPI++ loss is given by

Lm
λ(θ) = Ln(θ) + λ(L fu

N (θ)− L fl
n (θ))

= − 1
n

n

∑
i=1

(XliθYli − ψ(θ, Xli))

− λ

N

N

∑
i=1

(XT
uiθŶ f

ui
− ψ(θ, Xui)) +

λ

n

n

∑
i=1

(XT
li θŶ f

li
− ψ(θ, Xli))

Angelopoulos et al. (2023b) shows that the parameter λ can be optimally tuned to minimize
the asymptotic variance of the prediction-powered estimate, leading to better estimation
and inference than both the classical and PPI strategies. Particularly, in finite samples, we
can obtain the plug-in estimate

λ̂ =
1

2(1 + n
N )

×
Tr
(

Ĥ−1
θ̂PPI

(
Ĉovn(∇lθ̂PPI

,∇l f
θ̂PPI

) + Ĉovn(∇l f
θ̂PPI

,∇lθ̂PPI
)
)

Ĥ−1
θ̂PPI

)
Tr
(

Ĥ−1
θ̂PPI

ĈovN+n(∇l f
θ̂PPI

)Ĥ−1
θ̂PPI

)
where θ̂PPI = θ̂PPI++λ is obtained by taking a fixed λ ∈ [0, 1].

We summarize the multiPPI++ adjusted inference procedures for multinomial logistic re-
gression coefficients on predicted CODs by an NLP model f against covariate X, under
significance level α ∈ (0, 1) in Algorithm 1.
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A.4 Parameter Estimates Across All Sites: Full Data 80/20 Split
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Figure 8: Full Data 80/20 Split: Site/Model 1
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Figure 9: Full Data 80/20 Split: Site/Model 2
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Figure 10: Full Data 80/20 Split: Site/Model 3
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Figure 11: Full Data 80/20 Split: Site/Model 4
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Figure 12: Full Data 80/20 Split: Site/Model 5
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Figure 13: Full Data 80/20 Split: Site/Model 6
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Figure 14: Full Data 80/20 Split: Site/Model 7
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Figure 15: Full Data 80/20 Split: Site/Model 8

25



Published as a conference paper at COLM 2024

Communicable External Maternal Non-communicable
Cause of Death Label

0.00

0.02

0.04

0.06

0.08

Lo
g 

Od
ds

 R
at

io

up KNN
Ground Truth
Naïve
multiPPI++ Correction

Figure 16: Full Data 80/20 Split: Site/Model 9
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Figure 17: Full Data 80/20 Split: Site/Model 10
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Figure 18: Full Data 80/20 Split: Site/Model 11
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Figure 19: Full Data 80/20 Split: Site/Model 12
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Figure 20: Full Data 80/20 Split: Site/Model 13
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Figure 21: Full Data 80/20 Split: Site/Model 14
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Figure 22: Full Data 80/20 Split: Site/Model 15
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Figure 23: Full Data 80/20 Split: Site/Model 16
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Figure 24: Full Data 80/20 Split: Site/Model 17
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Figure 25: Full Data 80/20 Split: Site/Model 18
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Figure 26: Full Data 80/20 Split: Site/Model 19
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Figure 27: Full Data 80/20 Split: Site/Model 20
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Figure 28: Full Data 80/20 Split: Site/Model 21
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A.5 Sensitivity Analysis

In a sensitivity analysis, we varied our data splitting strategy, which revealed nuanced
insights regarding the behavior of the classifier. Notably, when maintaining the split
proportions (80/20) within each COD, the PPI++ classifier exhibited minimal utilization
of the labeled data, as indicated by the relatively small values of λ. Conversely, when
employing an 80/20 split on the entire dataset, this lead to a significant information loss
for the minority classes, resulting in larger λ values for certain splits. Since an (80/20) on
the whole dataset more closely resembles what one would see in reality on a prospective
study while an (80/20) split by COD is resembles a retrospective study, this illustrates the
importance of purposefully choosing an appropriate data splitting strategy to match the
desired analysis.
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A.6 Parameter Estimates Across All Sites: Stratified 80/20 Split
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Figure 29: Stratified 80/20 Split: Site/Model 22
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Figure 30: Stratified 80/20 Split: Site/Model 22
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Figure 31: Stratified 80/20 Split: Site/Model 22
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Figure 32: Stratified 80/20 Split: Site/Model 22
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Figure 33: Stratified 80/20 Split: Site/Model 22
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Figure 34: Stratified 80/20 Split: Site/Model 22
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Figure 35: Stratified 80/20 Split: Site/Model 22
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Figure 36: Stratified 80/20 Split: Site/Model 22
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Figure 37: Stratified 80/20 Split: Site/Model 22
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Figure 38: Stratified 80/20 Split: Site/Model 22
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Figure 39: Stratified 80/20 Split: Site/Model 22
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Figure 40: Stratified 80/20 Split: Site/Model 22
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Figure 41: Stratified 80/20 Split: Site/Model 22
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Figure 42: Stratified 80/20 Split: Site/Model 22
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Figure 43: Stratified 80/20 Split: Site/Model 22
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Figure 44: Stratified 80/20 Split: Site/Model 22
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Figure 45: Stratified 80/20 Split: Site/Model 22
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Figure 46: Stratified 80/20 Split: Site/Model 22
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Figure 47: Stratified 80/20 Split: Site/Model 22
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Figure 48: Stratified 80/20 Split: Site/Model 22
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Figure 49: Stratified 80/20 Split: Site/Model 22
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Figure 50: Stratified 80/20 Split: Site/Model 22
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Figure 51: Stratified 80/20 Split: Site/Model 22
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Figure 52: Stratified 80/20 Split: Site/Model 22
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Figure 53: Stratified 80/20 Split: Site/Model 22
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Figure 54: Stratified 80/20 Split: Site/Model 22
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B Ethics Statement

As this paper covers the study of the lives and deaths of real human beings, the ethical aspect
of this investigation was considered of paramount importance. First, to ensure that any
potential personally identifiable information was not mishandled, multiple layers of data
security were employed, the primary means being the use of a secure Microsoft Azure cluster
for the running of local models. Data concerns are always paramount. We are fortunate to be
working with de-identified data, however, when working with more sensitive data there are
a number of open-source LLMs which can be run locally (Llama-3, meditron, etc) to ensure
safe and ethical research practices. Additionally, many institutions, public and private, buy
access to local OpenAI servers. Our use of these methods is illustrative, aiming to lay a
foundational understanding of how to perform valid inference with NLP predictions. When
communicating with outside organizations such as OpenAI’s GPT models, we ensured
that all data set were from the publicly available PHMRC data, which has been previously
deidentified. Finally, in accordance with the importance of studying a sensitive topic such
as VAs deserve, we have done our utmost to ensure that our study’s objectives and tools
utilized, to the best of our abilities, gives a fair, and respectful analysis of subject matter in
question so that its results may be used for the furtherment of public health goals.

C Reproducibility Statement

To ensure the reproducibility of our results, we have published our code repository with our
entire pipeline - NLP training, predicting, inference and visualizations - to Github. Please
direct questions about data or modeling via email to avisokay or fansx at uw.edu. All data
is available in the data folder in the Github repository.
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