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Generative Al: A wellspring of Synthetic Data?

The ability to
mimic complex
human
generated
structures (ex
speech) has
shown
tremendous
potential.
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Synthetic Data for Staticians: An Opportunity and a Danger

Opportunity

> Reduce data collection costs

> Improve robustness
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Danger

> Propagate existing bias
> “Black box” nature limits interpretability

> Potential for model collapse
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Our Perspective

Generative Al is exceedingly common in research pipelines throughout the social
sciences, public health, demography, and beyond.

We should create statistical methods which work with Al generated data.

The Setup:
® Observing a specific outcome of interest, Y, is expensive.
® A scientist augments an existing dataset [X and Y] with Al generated
synthetic outcomes [X and f(X)] and wants to use both Y and f(X) to learn
about the statistical relationship between X and Y.

We call this Inference on Predicted Data (IPD) w




Overview of Inference on Predicted Data
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PPI: Mean Estimation n- sample size of labeled data (X,Y)
N- Sample size of Al-generated data (X,f(X))

Algorithm 1 Prediction-powered mean estimation

Input: labeled data (X,Y), unlabeled features X, predictor f, error level a € (0,1)

1: FP  6f — A = o Zf\il (X)) - IS (f(X) - Y)) > prediction-powered estimator
2 6% va (f(X3) = 67)? > empirical variance of imputed estimate
3 0% _y < 3 Ly (X)) - Y — A)2 > empirical variance of empirical rectifier

0'2 . .
4 Wo  21—q/2\ L5+ —L > normal approximation

Output: predlctlon-powered confidence set CL¥ = (OPP + wa)

. Produces unbiased estimates of theta
. Reduces size of the confidence interval compared to using just real data
. Robust to choice of f

. Requires no retraining/fine tuning of Al model [Off the shelf]

Image from: Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, & Tijana Zrnic. (2023). Prediction-Powered Inference.




PPI: Mean Estimation n- sample size of labeled data (X,Y)
N- Sample size of Al-generated data (X,f(X))

Algorithm 4 Prediction-powered linear regression

Input: labeled data (X,Y), unlabeled features X, predictor f, coefficient j* € [d], error level a € (0,1)

1: PP  6f — A = XTF(X) — XT(f(X)-Y) > prediction-powered estimator
~ Al 2 S Il Ny

2 8 LXK, M LYY (1) - X702 K XT

32 VX Myl > “sandwich” variance estimator for imputed estimate

£ S LXTX, M« LY (F(X:) - Vi — X[ A)2X, X[

5V« XMyl > “sandwich” variance estimator for empirical rectifier

6: Wo < 21—q /2\/ Vj:j* + Vj;,j - > normal approximation

Output: prediction-powered confidence set C-¥ = (OA?*P + wa)
. Produces unbiased estimates of theta
. Reduces size of the confidence interval compared to using just real data
. Robust to choice of f
. Requires no retraining/fine tuning of Al model [Off the shelf]

Image from: Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, & Tijana Zrnic. (2023). Prediction-Powered Inference.




PPI: Objective Function

L(#) :=E[ls(X,Y)] and LI () :=E[ly(X, f(X))].

The starting point of PPI and our approach is the recognition that E[¢g(X, f(X))] = E[fg(X, f(X))] =
L' (#), so that the “rectified” loss,

LP?(6) == Ln(9) + L4 (6) — LY (9),

where

1 — . & B
=~ ;Ee(Xi,Yi), Li(9) := - ;EQ(Xi,f(Xi) and L% ZEG(X“f
Efficient algorithms for estimation exist when L is convex

Image from: Anastasios N. Angelopoulos, John C. Duchi, & Tijana Zrnic. (2024). PPI++: Efficient Prediction-Powered Inference.




Real world example: Verbal Autopsies

Fewer than V5 of deaths are assigned a cause at

time of death (WHO Report, 2017).

Structured Interviews with family or friends of

the deceased known as Verbal Autopsies (VA)

serve as a cheap proxy to determine COD in

resource-scarce settings.




Setup

Imagine you are a public health researcher in a developing country. You are
given a budget to study the relationship between COD [Y] and age [X].

Recently, a research group has trained an Al model on other developing
countries which can predict a COD [f(X)] given a Verbal Autopsy interview.

“the deceased had been burnt and died within 1.5 hours of the accident”

I > COD: Fires

_ ICD10: External
The Al model isn’t 100% accurate and it was trained on a different country.

W

But surely it’s gotta be helpful for something....



Setup

As the researcher, you can either:

1. Fly out a coroner to various low resource areas to conduct traditional
autopsies. Real data collection: (X,Y)
a. Most expensive, but unbiased inference.

2. Conduct Verbal Autopsies and then use the NLP-Al model to predict
the COD from the interviews. Al-generated data: (X,f(X))
a. Cheapest, but the inference is biased and .

3. Combination of both, with a PPl correction: Conduct some traditional

autopsies (20%), but mostly use VA + NLP/AI predictions (80%).

a. Cheap, with debiased inference.



Experimental Design
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Transportability Challenge
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GPT-4 Zero Shot Prompt

<narrative>

Each narrative gets plugged in here

narrative>

<labels>

aids-tb: Patient died resulting from HIV-AIDs or Tuberculosis.

communicable: Patient died from a communicable disease such as pneumonia, diarrhea
or dysentery.

external: Patient died from external causes such as fires,

drowning, road traffic, falls, poisonous animals, suicide,

homicide, or other injuries.

maternal: Patient died from pregnancy or childbirth Context
including from severe bleeding, sepsis, pre-eclampsia and eclampsia.
non-communicable: Patient died from a non-communicable disease such as cirrhosis,
epilepsy, acute myocardial infarction, copd, renal failure, cancer, diabetes,

stroke, malaria, asthma.

unclassified: narrative does not contain enough information to predict cause of death.
</labels>

<options>
aids-th,
communicable,
external, S - - -
el ¢——— Explicitly require output in this format
non-communicable,
unclassified
</options>

Which label from options best applies applies to the narrative?

If you are not sure, return your best guess. ¢ |nstructions
Limit your response to one of the options exactly as it appears in the list.




NLP Predictions

Scores

1.0

0.8 -

0.71

mmm Accuracy
== F1 Score

0.754 53

We experimented with several
NLP prediction models including
bag of words + NB, SVM, KNN and
deep learning models BERT and
GPT-4.

GPT-4 yields the best results with

an Accuracy of 0.75 and an

F1-Score of 0.73.



PPl Corrections for COD ~ Age

Log Odds Ratio
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Cause of Death Label

PPl correction debiases the point estimate

Inflates the uncertainty from using predicted labels

Parameter of interest: Log odds
ratio between Age and COD.
[Aids-tb is baseline]

you magically had
the budget to do real autopsies on
everyone [Y ~ X]

Naive: if you regress Al generated
COD on Age [f(X) ~ Age].

multiPPI++ correction: estimation
of log odds using an efficient
multinomial version of PPI

[[f(X) ~ Age] + rectifier]




PPI
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Uttar Pradesh NB

0.150 Ground Truth
® Naive
0.125 ® multiPPI++ Correction
0.100
0.075 +
0.050 + +
0.025
0.000
-0.025
Comm\}nicable Extérnal Matérnal Non-comr‘nunicable
Cause of Death Label
(a) BoW with Naive Bayes
Uttar Pradesh SVM
0.150 Ground Truth
® Naive
0.125 ® multiPPI++ Correction
0.100 +
0.075 + +
0.050 * * + *
0.025
0.000
-0.025

External Maternal
Cause of Death Label

Communicable

Log Odds Ratio

Log Odds Ratio

Non-communicable

(c) BoW with Support Vector Machine
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Models with lower accuracy, like
Naive Bayes, have more room

for PPI correction.




Implications

We can recover accurate parameter estimates combining some ground truth
labels with Al-generated proxy labels and a PPI correction.

This opens up several research questions:

e Can we replace in-person interviews with phone interviews? [Our next NIH
grant application]

o What implications does this have for experimental design? [How do we do a
PPl assisted power calculation? Pragmatic clinical trials? Data collection?]

o« What if the Al is trained on survey data with known weights? [NHANES] How
do we incorporate these weights to make it extrapolate better?

o Implications for privacy and disclosure? [looking for those who know more ]

W
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PPl++: Objective Function

O = argmin LYY (), where LYY (9) := Ly, (0) + A - (L4, (9) — LL(9)).
0

e Lambda\in [0,1] is chosen in a data-adaptive fashion to represent how

reliable the Al model is
e Lambda=0 Results in classical Inference [aka ignore Al generated data]

® C(losely related to AIPW

. 1 n R 1 n_ N R _
gAIPW ::EZ(Yi—E[Y|X:Xi])+N—+n<ZE[Y|X:Xi]+ZE[Y|X=Xi})
=1

i=1 =l
1 n 1 7 N i
=2 (- fX) + (Zf(XO + ZﬂXi))

i1 i=1 i=1

n

= 3 it (—lif(x-wiif(fc))
T n 1+ R n < ‘ N & )

i=1

Image from: Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, & Tijana Zrnic. (2023). Prediction-Powered Inference.




ICD Codes

ICD-10 COD Classification
Mapping 34 PHMRC All-Cause Mortality Labels to Five Broad COD Labels

All-Cause Mortality Label

Broad COD Label

cirrhosis

epilepsy

pneumonia

copd

acute myocardial infarction
fires

renal failure

lung cancer

maternal

drowning

other cardiovascular diseases
aids

other non-communicable diseases
falls

road traffic

diabetes

other infectious diseases
tb

suicide

other injuries

cervical cancer

stroke

malaria

asthma

colorectal cancer
homicide
diarrhea/dysentery
breast cancer
leukemia/lymphomas
poisonings

prostate cancer
esophageal cancer
stomach cancer

bite of venomous animal

non-communicable
non-communicable
communicable
non-communicable
non-communicable
external
non-communicable
non-communicable
maternal

external
non-communicable
aids-tb
non-communicable
external

external
non-communicable
communicable
aids-tb

external

external
non-communicable
non-communicable
non-communicable
non-communicable
non-communicable
external
communicable
non-communicable
non-communicable
external
non-communicable
non-communicable
non-communicable
external




Workflow

The Workflow for Valid Inference Using multiPPI++ for VA Narratives.
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Classification Accuracies

Predicted Labels
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MultiPPI

Algorithm 1: mult iPPI++: Prediction-powered inference for Multinomial Classifica-
tion
Input: labeled K -category COD data {(Xj;, Y};)}™,, unlabeled data {X,;}}¥,, NLP model
f, significance level o € (0, 1), coefficient index j € [d(K — 1)]

1. Optimally select tuning parameter;\ // set tuning parameter

A

2. 05 = argmin L{(f) // multiPPI++ estimator
PcRA(K—1)

3. B = o (S0, ' (XE8) XX + S0, ¢/ (X56) XX, where

¥(0,x) = log ( kK:_ll e””Tok) ,0. € R? // empirical Hessian
4. %= ﬁ_l(%f/f + Va)H1, where

V; = X2Covn((@/(XEG) — Yf))Xy:) and

Va = (/Jafn((l — X)(zp’(Xl{é;) + (\Y;] = Yi)Xy) // covariance estimator

Output:
Prediction-powered point estimates 0‘/{ and confidence interval

(B = (éiy * 21_a/24/ 2]-3- /n) for coordinate j




How

Many modern statistical problems involve using the data you can

easily access to predict the variables you want but cannot measure.

These predictions then get used for downstream analysis or

data-driven policy decision-making.

Predicted labels are imperfect, and we should account for this.w



PHMRC Data

Collection of traditional autopsies and VA for each observation.
n=6763 adults.

Affords us “ground truth” labels which we can use for prediction

validation.
Six sites in four countries.

Collected in 2005.

W



Experimental Design

Prediction
mexico (n=1306)
ron communica bie 80% PPI++
- unlabeled ” WP model H
' 20% T
el gold-standard labels

@ We compare the PPIl++ corrected results with the baseline model
outputs using the complete dataset to demonstrate the validity of

our approach.



NLP Predictions
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NLP Predictions - before and after dropping ‘unclassified’
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